How far did Neolithic communities travel to build Stonehenge? New strontium isotope analysis on some of the cremated remains buried during the first phases of the monument’s construction is hinting at intriguing answers. (IMAGE: Adam Stanford, Aerial-Cam)

Stonehenge is one of the most extensively researched monuments in Britain, but until recently little was known about the people who were buried on the site thousands of years ago. This is now beginning to change, thanks to isotopic analyses of some of the cremated human remains interred during the monument’s first phase of construction, around 3000 BC. The project’s findings are shedding light on the movements and burial practices of long vanished – and surprisingly far-flung – communities, as Kathryn Krakowka reports.

Across the centuries, the uniqueness of Stonehenge and the enigmatic nature of its construction have given rise to a number of outlandish theories – used by the Druids as a celestial observatory or by the Romans as a temple; built by Merlin or by aliens – ideas that flourished as antiquarians and early investigators struggled to provide more plausible explanations. Little by little, though, modern scientific investigations have uncovered clues to the monument’s true purpose. In particular, the last two decades of fieldwork focusing on the stones and their surrounding area (see CA 212, 219, 252, 311, and 334), combined with recent scientific advances in archaeological research, have revolutionised our understanding of Stonehenge. While we may not have all the answers yet – and debates still arise between archaeologists on some of the solutions that have been put forward – we are slowly beginning to fill in the pieces of the puzzle.

The latest of these pieces concerns not the stones themselves, but the people who were buried close to them – and their surprisingly diverse origins. In a research project originally published in Scientific Reports, Dr Christophe Snoeck and researchers from the University of Oxford, the Vrije Universiteit Brussel, the Université libre de Bruxelles, the Muséum national d’Histoire naturelle, and University College London have used isotope analysis to examine some of the cremated human remains excavated at Stonehenge, with fascinating results. Their findings highlight not only how mobile some Neolithic populations were, and how important Stonehenge was to them, but also the lengths to which they may have been willing to go to bury their dead on the site.

The Stonehenge Riverside Project re-excavated Aubrey Hole 7 in 2008, and once again unearthed the cremated remains originally discovered by Hawley. (PHOTO: Adam Stanford, Aerial-CAM)


Isotope analyses had previously been conducted on the ‘Boscombe Bowmen’ – the Beaker period (c.2400-1800 BC) mass burial found at Boscombe Down (see CA 193) – as well as on animal remains from Durrington Walls, the Neolithic settlement near Stonehenge where the community responsible for building the main phase of the monument is thought to have lived (see CA 334).

The results from the Bowmen suggest that they may have hailed from west Wales or even northern France, while some of the animals being eaten at Durrington Walls appear to have been brought from as far away as western or northern Britain, suggesting that people had travelled some distances to get to Stonehenge. Both of these examples post-date the earliest phases of Stonehenge, though. What could strontium isotope analysis of the much earlier remains tell us about the people who were buried at the site during the first stages of the monument?

Osteoarchaeologists were able to identify at least 27 individuals out of the commingled remains buried in Aubrey Hole 7. Here we can see occipital fragments from three of the individuals. (IMAGE: Christie Wills)

The results were intriguingly mixed. Some 15 of the 25 individuals were deemed to be probably ‘local’, in as much as their isotope values reflected the chalk geology of Stonehenge and the surrounding area. This means that for the last decade or so of their lives, they probably obtained most of their diet from the area in and around Salisbury Plain. The remaining ten had isotope ratios that were inconsistent with the surrounding area, however, meaning that they could not have solely sourced their food from around Stonehenge and probably either got all of their food from further afield or lived somewhere else entirely.

What does this mean? Delving deeper into the results, the picture becomes even more interesting. For seven of this group of ten, the team obtained intermediate isotope values that could reflect a mixed diet which came from both the west – either south-west England or west Wales – and the chalk areas in and around Salisbury Plain. This suggests that these individuals might have moved between these regions sometime within the last decade or so of their lives – perhaps hinting at a history of contact and movement in both directions between the two locations.

For the remaining three, the strontium values were so high that they probably did not obtain any of their diet from the Wessex chalk. Instead, the majority of their diet seems to have come from regions with older lithologies, such as Devon or west Wales. The team labelled these individuals as ‘non-local’, since their results indicate that they are unlikely to have lived in the Stonehenge area for any meaningful period of time. The ratios are also in keeping with origins in parts of Scotland, Ireland, and continental Europe, but the team suggests that west Wales may be the most likely candidate. As it has been established that a key component of Stonehenge, the bluestones, came from the Mynydd Preseli region of Pembrokeshire, they argue that it seems more than coincidence that the people buried at the monument have isotopic signatures that could indicate that they may have originated there as well.

Many of the Stonehenge bluestones have been linked to the Mynydd Preseli region of Wales (pictured is Carn Goedog, where the bluestones made of dolerite are believed to have originated; see CA 311). Recent isotope analysis on the cremated remains buried at Stonehenge suggests that some of the individuals could have lived nearby in the years leading up to their deaths. (PHOTO: Adam Stanford, Aerial-Cam)

This seems plausible in light of the hypothesis of Mike Parker Pearson and his colleagues that the bluestones were brought to Salisbury Plain sometime between 3015 and 2935 BC – the period to which the cremations analysed in this study have been dated. This link also seems to lend credence to suggestions that the bluestones may have originally been placed in the Aubrey Holes, effectively on top of these cremated burials, to mark their burial locations. Might these ‘non-local’ people have travelled to Salisbury Plain with the bluestones? If so, could this feat have been repaid with burial at the prestigious site? It is an evocative idea, but it seems that the scenario could have been more surprising still.

This is an excerpt from a feature published in CA 344. Read on in the magazine. Click here to subscribe

Leave a Reply